Lesen sie hier den Beitrag:

6 Gründe für ein Cloud-basiertes Data Warehouse

Die Verwaltung des Data Warehouse ist kompliziert – einige Unternehmen haben Probleme mit Speicher, Dateiformaten oder Übersichtlichkeit. Hier lesen Sie 6 Gründe, warum der Wechsel zu einem Data Warehouse in der Cloud diese Probleme löst und weitere Vorteile bringt.

6 Gründe für ein Cloud-basiertes Data Warehouse

Ein Data Warehouse, das Daten aus verschiedenen Quellen zusammenfasst, um sie analysieren und darauf reagieren zu können, ist heute entscheidend für den Geschäftserfolg. Denn es verarbeitet schnell die enormen Datenmengen, die sich heute in Unternehmen ansammeln. Darauf basierend können Führungskräfte zuverlässige datenbasierte Entscheidungen treffen.

Allerdings halten es fast zwei Drittel der kürzlich befragten Experten für „schwierig“ oder „sehr schwierig“, ihre Data-Warehouse-Lösung zu verwalten. So entwickeln sich Cloud-basierte Data Warehouses aufgrund der steigenden Komplexität und Menge der Daten zur effizientesten Möglichkeit, diese Komplexität zu reduzieren und gleichzeitig die zunehmend geforderte Agilität, Sicherheit und Performance zu gewährleisten.

Unternehmen nutzen vor allem aus folgenden Gründen ein Cloud-basiertes Data Warehouse:

1. Große Datenmengen bewältigen

Cloud-basierte Data Warehouses bieten die nötige Flexibilität, um den Speicherplatz unabhängig von den Serverkapazitäten zu erweitern. Dies ermöglicht die Aufnahme großer Datenmengen, ohne die entsprechenden Rechenkosten zu erhöhen. Durch die Umstellung auf ein Cloud-basiertes Data Warehouse können Unternehmen auch die Ressourcen innerhalb weniger Minuten oder sogar Sekunden anhand der Schwankungen des Datenwachstums skalieren. Die Steuerung ist über APIs und Dashboards auf einfache Weise möglich. Daher müssen Unternehmen nicht mehr vorplanen, Vorausbeschaffungen tätigen oder sich um Speicherplatzmangel sorgen.

2. Viele Datenformate unterstützen

Die in Unternehmen anfallenden Daten sind nicht alle strukturiert. Daher unterstützen Cloud-basierte Data Warehouses verschiedene semi-strukturierte Datentypen wie JSON und CSV sowie eine Vielzahl anderer Formate. Einige Dienste unterstützen auch die Abfrage von unstrukturierten Daten auf externem Speicher. Durch den Support mehrerer Abfrage- und Datenformate können Cloud-basierte Data Warehouses halb- und unstrukturierte Daten verarbeiten, die für große Daten-Workloads typisch sind. Der zusätzliche Vorteil für Big Data Workloads besteht darin, dass die meisten Cloud-basierten Lösungen langfristige Cold-Storage-Optionen bieten. Dann sind die Daten zu niedrigeren Speicherkosten und mit minimierten Geschäftsauswirkungen leicht zugänglich.

3. Die Nutzung vereinfachen

Ein Cloud-basiertes Data Warehouse unterstützt Ad-hoc- und parallele Abfragen auf demselben Datensatz ohne Beeinträchtigung der Performance bestehender Workloads. So können Anwender die Daten mit sehr geringen Einschränkungen untersuchen. Darüber hinaus reduzieren vereinfachte Mechanismen zur Datenerfassung sowie ELT (Extraktion/Laden/Transformation)-Verarbeitung den Aufwand für die Anwender zur Wartung komplexer ETL-Pipelines. Benutzer können gleichzeitig viele Abfragen über Terabyte von Daten ausführen und erhalten Antworten in nur wenigen Sekunden.

4. Den TCO reduzieren

Cloud-basierte Dienste bieten Pay-per-Use-Abrechnungsmodelle, die auch Data-Warehouse-Lösungen nutzen. Die meisten Cloud-basierten Data Warehouses trennen Speicher- und Serverleistungen aufgrund von Performance- und Skalierungsanforderungen. Durch die Cloud-Kostenstruktur können Unternehmen Speicher- und Rechenleistungen sowohl einzeln als auch gebündelt bezahlen, aber basierend auf dem jeweiligen Nutzungsgrad. Mit Cloud-basierten Data Warehouses lassen sich Hardwarekosten senken, da keine Erweiterungen mehr nötig sind, und Wartungsaufwand reduzieren. So fallen keine Kosten mehr für die entsprechenden Mitarbeiter, Lizenzen und Hardware an.

5. Die Sicherheit verbessern

Cloud-basierte Data Warehouses verwenden hardwarebeschleunigte AES-128 oder eine höhere Verschlüsselung für Daten im Ruhezustand. Alle Daten, die zwischen Servern, Regionen oder Diensten übertragen werden, sind TLS-verschlüsselt. Die meisten Cloud-basierten Data Warehouses unterstützen virtuelle private Netzwerke mit Verbindungen zu lokalen Netzwerken durch standardisierte IPsec-VPNs. Die meisten Unternehmen würden eigene interne Teams benötigen, um Lösungen auf diesem Sicherheitsniveau zu verwalten. Doch in den meisten Fällen könnten selbst interne Lösungen nicht mit dem Niveau an Sicherheitskontrollen einer Cloud-Umgebung mithalten – sowohl in Bezug auf Funktionalität als auch Einfachheit der Nutzung.

6. Disaster Recovery und Business Continuity gewährleisten

Die meisten Cloud-basierten Data Warehouses trennen Speicher und Server, um eine asynchrone Replikation des Speichers über verschiedene Regionen hinweg zu unterstützen – ohne die vorhandenen Rechenkapazitäten und Abfragen zu beeinträchtigen. Backups und Snapshots werden automatisch erzeugt und innerhalb der jeweiligen Region bereitgestellt. Einige Anbieter nutzen ihre eigenen privaten Backend-Netzwerke zwischen den Regionen, um die Latenzzeiten weiter zu reduzieren, die Zuverlässigkeit und Sicherheit zu erhöhen und die Verfügbarkeit zu verbessern. Dabei gehen während des Wiederherstellungsprozesses nur wenige bis keine Daten verloren. Zur Disaster Recovery lassen sich schnell die überregional replizierten Daten nutzen, indem die Verarbeitungskapazität erhöht wird, wobei die Verfügbarkeit von sofort bis zu einigen Minuten reicht. Bestimmte Systeme unterstützen die sofortige Abfrage eines Teils der Daten, während der Rest im Hintergrund geladen wird. Diese Funktionen können lokale Data Warehouses nicht bieten.

Fazit

Cloud-basierte Data Warehouses eröffnen viele Vorteile für Unternehmen: Sie können effizienter arbeiten sowie interne Teams von Wartungs- und Betriebsaufwand entlasten. Allerdings sollten sie die Komplexität der Einführung und Anpassung an ihre spezifischen Bedürfnisse nicht unterschätzen. Und die Vorteile sind auch nicht umsonst. Denn Unternehmen müssen Strukturen und Prozesse für Cloud-basierte Data Warehouses aufbauen sowie neue Nutzungs- und Preismodelle verstehen.

Professional Services-Teams können Unternehmen bei der Umsetzung unterstützen. Sie helfen auch bei der Planung, Bereitstellung, Migration und Verwaltung von Cloud-basierten Data Warehouses. Dabei stellen sie sicher, dass Kunden den größtmöglichen Nutzen aus ihrer digitalen Transformation ziehen.

weitere Beiträge zum Thema:

 

Der EAS-Insider – Ihr Navigator zu einem erfolgreichem Business!

So kann Sie Business Intelligence erfolgreicher machen:

Was ist Business Intelligence?

Business Intelligence (BI) bezieht sich auf Technologien, Prozesse und Methoden, die Unternehmen nutzen, um aus Rohdaten verwertbare Informationen zu gewinnen. Diese Informationen helfen, fundierte Geschäftsentscheidungen zu treffen. BI umfasst die Erfassung, Analyse und Darstellung von Daten durch Tools und Software, die komplexe Daten in verständliche Berichte, Dashboards und Visualisierungen umwandeln.

Zu den Hauptkomponenten von BI gehören Datenanalyse, Datenmining, Berichterstellung und Performance-Management. BI-Tools ermöglichen es Unternehmen, Trends zu erkennen, operative Effizienz zu verbessern, Kundenverhalten zu verstehen und die Unternehmensstrategie zu optimieren. Durch den Einsatz von BI können Unternehmen ihre Wettbewerbsfähigkeit steigern, indem sie datengetriebene Entscheidungen schneller und präziser treffen.

Wie kann Business Intelligence ein Unternehmen digital erfolgreicher machen?

Business Intelligence (BI) macht ein Unternehmen digital erfolgreicher, indem es datenbasierte Entscheidungen erleichtert und die Effizienz steigert. BI-Tools ermöglichen die Analyse großer Datenmengen, um wertvolle Einblicke zu gewinnen und fundierte Entscheidungen zu treffen. Unternehmen können Trends erkennen, Kundenverhalten analysieren und ihre Geschäftsstrategien entsprechend anpassen. BI verbessert die operative Effizienz, indem es Engpässe identifiziert und Prozesse optimiert. Echtzeit-Dashboards bieten Transparenz und erleichtern die Überwachung der Unternehmensleistung. Dadurch können Unternehmen schneller auf Marktveränderungen reagieren und Wettbewerbsvorteile nutzen. Insgesamt stärkt BI die digitale Transformation, indem es Unternehmen hilft, agiler und zukunftsorientierter zu agieren.

Wichtige Schlagworte im Kontext von Business Intelligence:

Datenanalyse

Der Prozess der Untersuchung von Datensätzen, um Muster, Zusammenhänge und Erkenntnisse zu gewinnen, die zur Verbesserung von Geschäftsentscheidungen beitragen.

Dashboards

Visuelle Darstellungen von Daten, die Echtzeitinformationen und Metriken auf einen Blick bieten, um Entscheidungsprozesse zu unterstützen und die Leistung zu überwachen.

Datenvisualisierung

Die grafische Darstellung von Daten, die es erleichtert, komplexe Informationen verständlich zu machen und Einblicke schnell zu vermitteln.

Aktuelle Beiträge zum Thema Business Intelligence:

Unsere aktuellen Blog-Beiträge!

Das sind die aktuellen Beiträge zum Thema:

Aktuelle Beiträge zum Thema:
 

DAS EAS-MAG-Glossar für den Beitrag:

6 Gründe für ein Cloud-basiertes Data Warehouse

EAS-MAG-Glossar:

Big Data

Big Data bezeichnet riesige, komplexe Datenmengen, die mit traditionellen Methoden schwer zu verarbeiten sind. Unternehmen nutzen Big Data, um Kundenverhalten zu analysieren, Geschäftsprozesse zu optimieren und fundierte Entscheidungen zu treffen. Durch die Analyse und Verarbeitung solcher Daten können wertvolle Erkenntnisse gewonnen werden. Typische Tools für Big Data umfassen Datenmanagement, maschinelles Lernen und Echtzeit-Analysen. Die Fähigkeit, große Datenmengen effizient zu verarbeiten, verschafft Unternehmen Wettbewerbsvorteile durch personalisierte Angebote, vorausschauende Wartung und verbesserte Geschäftsstrategien.

Cloud

Cloud bezeichnet die Bereitstellung von Software, Diensten und Daten über das Internet statt lokal auf firmeneigenen Servern. Unternehmen nutzen Cloud-basierte Lösungen, um Flexibilität, Skalierbarkeit und Kosteneffizienz zu erhöhen. Anwendungen, wie CRM, ERP oder Buchhaltung, werden über die Cloud gehostet und ermöglichen Mitarbeitern den Zugriff von überall. Die Cloud reduziert die Notwendigkeit für teure IT-Infrastruktur und Wartung, da Anbieter für Sicherheit, Updates und Verfügbarkeit sorgen. Typische Cloud-Modelle umfassen SaaS (Software as a Service), PaaS (Platform as a Service) und IaaS (Infrastructure as a Service).

 
Transparenzhinweis für Redaktionsbeitrag
6 Gründe für ein Cloud-basiertes Data Warehouse

Unternehmen

Autor