Lesen sie hier den Beitrag:

6 Voraussetzungen für den Einsatz von KI in der Produktion

Dank Künstlicher Intelligenz können Industrieunternehmen effizienter und kostengünstiger produzieren, die Produktionsqualität erhöhen und Produktionsstörungen vermeiden – die Einsatzmöglichkeiten für smarte Anwendungen in der Branche sind nahezu unbegrenzt. Doch wollen Unternehmen tatsächlich das volle Potenzial von KI ausschöpfen, benötigen sie dafür geeignete IT-Infrastrukturen. Dell Technologies erklärt, was diese bieten und leisten müssen. 

6 Voraussetzungen für den Einsatz von KI in der Produktion

KI ist das Herzstück der Smart Factory und vermag Produktionsumgebungen geradezu zu revolutionieren. Die Algorithmen machen Fertigungsroboter vielseitiger und sicherer, helfen bei der vorausschauenden Wartung von Maschinen und Anlagen und erkennen selbst kleinste Abweichungen von Produktionsparametern und Umgebungsbedingungen. Zudem helfen sie bei einer optimalen Produktionsplanung, die Leerlaufzeiten und Ressourcenverschwendung vermeidet. All das können sie allerdings nur, wenn die digitalen Infrastrukturen den hohen Anforderungen, die KI-Anwendungsfälle stellen, gewachsen sind. Dell Technologies nennt die entscheidenden Aspekte, auf die Industrieunternehmen achten müssen:

1. Datenverarbeitung am Edge

Ein Fertigungsroboter muss seine Umgebung in Echtzeit wahrnehmen, um Werkstücke korrekt zu bearbeiten oder zu montieren, und viele Steuersysteme müssen in Sekundenbruchteilen in die Produktion eingreifen, wenn sich Fertigungsparameter plötzlich verändern. Für eine Datenübertragung in die Cloud oder ein zentrales Rechenzentrum ist da schlicht keine Zeit – ausreichend niedrige Latenzen garantieren nur leistungsstarke Edge-Infrastrukturen, zu denen neben Server- und Storage-Systemen auch schnelle drahtlose Netzwerke zählen. In vielen KI-Anwendungsfällen ist der Mobilfunkstandard 5G die beste Wahl, da er hohe Bandbreiten und niedrige Latenzen bietet, problemlos tausende von Sensoren mit IT- und OT-Systemen verknüpft und eine synchronisierte Kommunikation zwischen diesen ermöglicht, damit alle Produktionsabläufe genau aufeinander abgestimmt werden können.

2. Leistungsstarke Systeme, die cool bleiben

KI-Anwendungen erfordern viel Rechenleistung, weshalb meist Server mit vielen GPUs und hoher Leistungsdichte zum Einsatz kommen. Diese Server setzen auf optimierte Kühlkonzepte, um die entstehende Abwärme effizient abzuleiten. Wo das mit der klassischen Luftkühlung nicht mehr funktioniert, werden CPUs und GPUs mit Flüssigkeiten gekühlt. Allerdings lassen sich die datenverarbeitenden Systeme am Edge nicht immer in geschützten und klimatisierten Räumlichkeiten unterbringen. In solchen Fällen sind Rugged-Server notwendig, die hohen Temperaturen, Staub, Erschütterungen und Vibrationen trotzen. Je nach Modell sind diese nur halb so tief wie Standard-Server und wahlweise von der Vorder- oder Rückseite zugänglich, sodass sie sich in kompakten Racks oder Schränken montieren lassen und Server-Techniker alle Anschlüsse und Komponenten gut erreichen.

3. Offene Schnittstellen und Standards

In der Smart Factory wachsen IT und OT zusammen. Damit die verschiedenen Systeme reibungslos miteinander kommunizieren können und die wertvollen Daten aus der Produktionsumgebung nicht in Silos feststecken, sind Unternehmen auf Plattformen angewiesen, die offene Schnittstellen und Standards unterstützen. Diese erleichtern es auch, Daten für die langfristige Aufbewahrung oder weiterführende Auswertungen, die nicht zeitkritisch sind, in die Cloud oder ein Rechenzentrum zu übertragen. 

4. Zentralisierte und automatisierte Verwaltung

Nicht nur die Edge-Systeme selbst, sondern auch die darauf laufenden Anwendungen müssen sich zentralisiert und weitgehend automatisiert bereitstellen und verwalten lassen. Schließlich werden KI-Anwendungen kontinuierlich weiterentwickelt und müssen daher regelmäßig auf den Edge-Systemen aktualisiert werden – oder es kommen neue KI-Anwendungen für neue Anwendungsfälle hinzu. Ideal ist es, wenn Unternehmen die Anwendungen zunächst zentral paketieren und konfigurieren und dann nebst Ressourcendefinitionen, Netzwerkeinstellungen und individuellen Workflows in einem Schritt an die gewünschten Edge-Systeme der verschiedenen Standorte ausrollen. Auf diese Weise sind sie auch in der Lage, schnell neue Versionen für Tests oder spezielle Tools für einzelne Projekte bereitzustellen.

5. Zugriff auf ein großes Ökosystem aus fertigen Anwendungen

Unternehmen müssen nicht alle KI-Anwendungen selbst entwickeln, denn für Anwendungsfälle wie Predictive Maintenance, Machine Vision, Edge Analytics und OT-Security gibt es bereits zahlreiche fertige Lösungen. Viele Anbieter solcher Lösungen arbeiten eng mit den Anbietern von Infrastrukturlösungen zusammen, um sicherzustellen, dass sich ihre Anwendungen nahtlos in die Edge-Systeme integrieren und optimal funktionieren. Unternehmen sollten daher auf Infrastrukturanbieter setzen, die ein großes Partnerökosystem vorweisen können, um gängige KI-Anwendungen schnell und ohne großes Risiko einzuführen.

6. Hohe Sicherheit

KI-Anwendungen am Edge sind geschäftskritisch – fallen sie aus oder liefern fehlerhafte Ergebnisse, drohen Produktionsunterbrechungen oder Qualitätseinbußen. Moderne Edge-Systeme bringen deshalb fest integrierte Sicherheitsfunktionen wie UEFI Secure Boot und vTPM mit. UEFI Secure Boot stellt sicher, dass nur vertrauenswürdige und autorisierte Software auf Edge-Systemen bootet, sodass sich keine Malware einnisten kann. vTPM wiederum ist ein virtuelles Trusted Platform Module (TPM), das kryptografische Funktionen und einen sicheren Speicher für Schlüssel, Zertifikate und Passwörter bereitstellt, um virtuelle Maschinen zu verschlüsseln oder ihre Identität und Integrität zu überprüfen. Darüber hinaus können Unternehmen ihr Sicherheitsniveau erhöhen, indem sie Zero-Trust-Konzepte umsetzen, also nur unbedingt notwendige Berechtigungen vergeben und alle Zugriffe konsequent verifizieren. Plattformen, die Security-Features wie Multifaktor-Authentifizierung und rollenbasierte Zugriffskontrollen fest integrieren, können die Umsetzung von Zero Trust erheblich erleichtern.

Modernisierung der Infrastruktur als Schlüssel zum Erfolg von KI in der Produktion

KI kann für produzierende Unternehmen ein echter Gamechanger sein, doch die Einführung ist nicht immer einfach“, betont Chris Kramar, Director & General Manager OEM DACH bei Dell Technologies in Deutschland. „Das liegt unter anderem an veralteten Infrastrukturen, die nicht für die Performance- und Latenzanforderungen von KI-Anwendungsfällen ausgelegt sind. Um den Erfolg ihrer KI-Initiativen nicht zu gefährden, sollten Unternehmen deshalb parallel zur Anschaffung und Entwicklung von KI-Anwendungen ihre Infrastrukturen modernisieren und dabei auf einfach zu verwaltende und integrationsfreundliche Systeme und Plattformen achten.“  

weitere Beiträge zum Thema:

 

Der EAS-Insider – Ihr Navigator zu einem erfolgreichem Business!

So kann Sie künstliche Intelligenz erfolgreicher machen:

Was ist künstliche Intelligenz?

Im Kontext von Unternehmenssoftware bezieht sich künstliche Intelligenz (KI) auf Technologien, die Geschäftsprozesse automatisieren und optimieren, indem sie menschenähnliche Intelligenz auf spezifische Aufgaben anwenden. KI-gestützte Software kann große Datenmengen analysieren, Muster erkennen und Vorhersagen treffen, um fundierte Entscheidungen zu ermöglichen. Anwendungen umfassen Chatbots für den Kundenservice, die Automatisierung von Routineaufgaben, personalisierte Marketingstrategien und vorausschauende Wartung. KI verbessert die Effizienz und Genauigkeit, reduziert Kosten und steigert die Produktivität. Durch die Integration von KI in Unternehmenssoftware können Unternehmen Wettbewerbsvorteile erlangen, da sie schneller und agiler auf Marktveränderungen reagieren können, während sie gleichzeitig die Kundenerfahrung verbessern.

Wie kann künstliche Intelligenz ein Unternehmen digital erfolgreicher machen?

Künstliche Intelligenz (KI) kann ein Unternehmen digital erfolgreicher machen, indem sie Prozesse automatisiert, Entscheidungsfindung verbessert und Effizienz steigert. KI-gestützte Analysen bieten tiefe Einblicke in Daten, ermöglichen präzisere Vorhersagen und helfen, Geschäftsstrategien zu optimieren. Durch Automatisierung können Routineaufgaben effizienter erledigt werden, was Kosten senkt und menschliche Ressourcen für strategische Aufgaben freisetzt. KI verbessert auch die Kundenerfahrung durch personalisierte Empfehlungen und schnelle Reaktionen auf Anfragen. In der Produktion optimiert KI die Lieferkette und verringert Ausfallzeiten durch vorausschauende Wartung. Insgesamt fördert KI Innovation, Agilität und Wettbewerbsfähigkeit, indem sie Unternehmen befähigt, schneller und intelligenter auf Marktveränderungen zu reagieren.

Wichtige Schlagworte im Kontext von künstliche Intelligenz:

Automatisierung

Der Einsatz von KI, um wiederkehrende Aufgaben in Unternehmensprozessen zu automatisieren, wodurch Effizienz gesteigert und menschliche Ressourcen für strategische Aufgaben freigesetzt werden.

Predictive Analytics

Die Verwendung von KI-Techniken, um aus Daten Vorhersagen über zukünftige Ereignisse oder Trends zu treffen, die Unternehmen helfen, bessere Geschäftsentscheidungen zu treffen.

Chatbots

KI-gesteuerte Programme, die in Unternehmenssoftware integriert sind, um Kundenanfragen automatisiert zu beantworten, den Kundenservice zu verbessern und die Benutzererfahrung zu optimieren.

Aktuelle Beiträge zum Thema künstliche Intelligenz:

Unsere aktuellen Blog-Beiträge!

Das sind die aktuellen Beiträge zum Thema:

Aktuelle Beiträge zum Thema:
 

DAS EAS-MAG-Glossar für den Beitrag:

6 Voraussetzungen für den Einsatz von KI in der Produktion

EAS-MAG-Glossar:

Predictive Maintenance

Predictive Maintenance (vorausschauende Wartung) ist eine Strategie, die in Unternehmenssoftware genutzt wird, um den optimalen Wartungszeitpunkt für Maschinen und Anlagen vorherzusagen. Durch die Analyse von Echtzeitdaten aus Sensoren, Maschinendaten und historischen Wartungsinformationen ermöglicht Predictive Maintenance die Identifizierung von potenziellen Ausfällen, bevor diese auftreten. Diese Methode verwendet Algorithmen und maschinelles Lernen, um Muster und Anomalien zu erkennen. Unternehmen profitieren von einer Reduzierung ungeplanter Ausfallzeiten, einer Verlängerung der Lebensdauer von Anlagen und einer Senkung der Wartungskosten, da Wartungsarbeiten effizienter und gezielter durchgeführt werden können.

Predictive Maintenance

Predictive Maintenance (vorausschauende Wartung) ist eine Strategie im Bereich der Unternehmenssoftware, die darauf abzielt, den Zustand von Maschinen und Anlagen kontinuierlich zu überwachen, um Wartungsbedarf frühzeitig zu erkennen und Ausfälle zu verhindern. Mithilfe von Sensoren und Datenanalysen werden Betriebsdaten gesammelt und analysiert, um Muster zu identifizieren und Vorhersagen über den optimalen Wartungszeitpunkt zu treffen. Dies reduziert ungeplante Ausfallzeiten, verlängert die Lebensdauer von Anlagen und senkt Wartungskosten. Predictive Maintenance nutzt Technologien wie das Internet der Dinge (IoT) und maschinelles Lernen, um die Effizienz von Produktionsprozessen zu verbessern und die betriebliche Leistung zu optimieren, indem Wartungsaktivitäten gezielt geplant werden.

KI - Künstliche Intelligenz

Künstliche Intelligenz (KI) bezeichnet die Fähigkeit von Computern und Maschinen, Aufgaben zu übernehmen, die normalerweise menschliche Intelligenz erfordern. Dazu gehören Lernen, Problemlösung, Mustererkennung und Entscheidungsfindung. KI-Systeme nutzen Algorithmen und Daten, um eigenständig zu lernen und sich zu verbessern. Beispiele sind maschinelles Lernen, neuronale Netze und natürliche Sprachverarbeitung. KI findet Anwendung in vielen Bereichen, darunter autonome Fahrzeuge, Spracherkennung, personalisierte Empfehlungen und medizinische Diagnosen. Sie bietet das Potenzial, Effizienz und Innovation zu steigern, bringt jedoch auch ethische Herausforderungen und Diskussionen über Datenschutz und Arbeitsplatzveränderungen mit sich. KI verändert die Art und Weise, wie wir leben und arbeiten.

 
Transparenzhinweis für Pressemitteilung
6 Voraussetzungen für den Einsatz von KI in der Produktion

Unternehmen

Dell Technologies

Dell Technologies unterstützt Organisationen und Privatpersonen dabei, ihre Zukunft digital zu gestalten und Arbeitsplätze sowie private Lebensbereiche zu transformieren. Das Unternehmen bietet Kunden das branchenweit umfangreichste und innovativste Technologie- und Services-Portfolio für das Datenzeitalter.

Autor