Lesen sie hier den Beitrag:

6 Fehler beim Stammdatenmanagement

Ohne gute Stammdaten laufen auch die Unternehmensprozesse nicht effizient. Daher braucht es oft ein Projekt zum Thema Stammdaten-Manage­ment. Hier tauchen oft die gleichen Probleme auf. DIE DIGITAL-WEBER haben in diesem Beitrag die sechs häufigsten Fehler zusammengetragen und geben Tipps zur Vermeidung.

6 Fehler beim Stammdatenmanagement

Die Qualität der Stammdaten, egal ob Kunden-Stammdaten, Lieferanten-Stammdaten oder Artikel-Stammdaten, hat einen entscheidenden Einfluss auf die Effizienz von Geschäftsprozessen. Veraltete, falsche oder fehlende Stammdaten führen im schlimmsten Fall zu Umsatzeinbußen oder schwächen die Reputation gegenüber dem Kunden oder Lieferanten. Ein Stammdatenmanagement kann helfen.

Was ist eigentlich Stammdatenmanagement?

Die Idee des Stammdatenmanagements ist alle strategischen, organisatorischen, methodischen und technologischen Aufgaben mit Fokus auf die Stammdaten und elektronischen Informationen eines Unternehmens in einer Methodik zu vereinen. Die Aufgabe des Stammdatenmanagements ist somit die Sicherstellung der konsistenten, vollständigen, aktuellen, korrekten und qualitativ hochwertigen Stammdaten.

Die Vorteile des Stammdatenmanagements sind neben konsistente Daten und Informationen auch effizientere Geschäftsprozesse. Daher ist auch Stammdatenmanagement für kleine und mittelständische Unternehmen wichtig. Mit eigener Software oder Systeme innerhalb von ERP-Software kann dieses Stammdatenmanagement elektronisch unterstützt werden (siehe dazu auch am Ende des Beitrages).

Welche Fehler kann man im Stammdatenmanagement machen?

Unternehmen, manchmal auch aber nur einzelne Abteilungen, starten dann oft ein Projekt zur Verbesserung der Stammdaten und einer Prozessanalyse zum Stammdatenmanagement. Und genau bei diesem Vorhaben kommt es oft zu Fehlern, die in diesem Beitrag näher erläutert werden.

1. Die Geschäftsleitung ist nicht involviert

Das Projekt zum Stammdatenmanagement muss in Abstimmung mit der Geschäftsleitung erfolgen und ist keine Aufgabe einer einzelner Abteilung. Nur so kann das abteilungsübergreifende Ressort-Denken aufgelöst werden. Der Verantwortliche aus der Geschäftsleitung muss sicherstellen, dass das Projekt-Team nicht nur die Verwaltung der Daten abteilungsübergreifend optimieren kann sondern auch das Unternehmensprozesse und Verfahren in allen Abteilungen angepasst werden können, wenn dies notwendig ist. Solche weitreichende Veränderungen werden selten positiv aufgenommen daher ist eine gute Kommunikation im Change Management notwendig, die von der Geschäftsführung zu 100% gestützt wird.

2. Das Stammdatenmanagement ist kein IT-Thema

Stammdatenmanagement ist keine technische Herausforderung oder Problem. Gerne wird versucht das Thema von der IT-Abteilung mit einer MDM-Lösung (Master Data Management Lösung) zu lösen. Das Thema muss aber von den Fachabteilungen angegangen werden. Nur die verschiedenen Fachabteilungen kennen eigentlich die inhaltlichen Anforderungen an korrekte und aktuelle Daten. Und sie kenne die eigenen Geschäftsprozesse in den denen die verschiedenen Daten erzeugt oder verändert werden. Die IT kann bei der Auswahl der MDM-Lösungen helfen und im Anschluss auch bei der Implementierung unterstützen, aber die Fachabteilungen müssen hier in den fachlichen Part übernehmen.

3. Das Stammdaten-Management-Projekt hat zu viele Ziele

Wie bei jedem Projekt braucht es basierend auf einer richtigen Ziel-Matrix ein gutes Projekt-Management innerhalb der Organisation. Es braucht natürlich eine langfristige Vision für das Daten-Management. Diese darf aber nicht dazu verleiten, den Projektumfang so anzulegen, dass eine schnelle und effiziente Durchführung nicht mehr möglich ist. Evtl. ist ein agiles Projekt-Management, wie es Scrum möglich macht, besser um Schritt für Schritt die Ziele zu erreichen.

Bei einem unrealistischen Projektumfang, vor allem im Wasserfall-Model, kann schnell das gesamte Projekt scheiten und man steht am Ende ohne Ergebnis da.

Zu Beginn sollte man sich überlegen wie man das Projekt einführen möchte:

  • Agil, wie mit SCRUM oder
  • Klassisch, wie mit dem Wasserfall-Modell

Abhängig vom Modell, sollte man sich dann mit der Zielmatrix und den Meilensteinen beschäftigen. Ein erfahrener Projekt-Manager, ggf. auch extern, kann hier helfen das Projekt auf die Straße zu bekommen

4. Keine Change-Kommunikation

Das Projekt, die Ziele und die Vision können noch so gut sein, scheitert aber wenn nicht alle verschiedenen Parteien in der Organisation an Board geholt werden. Oft verspielt sich das Projekt-Team den eigenen Erfolg in dem im stillen Kämmerlein alles erledigt wird und am Ende Alle mit der neuen Lösung überrascht werden. Das Ergebnis ist Ablehnung und Vorbehalte. Eine gute Change-Kommunikation an die betroffenen Gruppen und entsprechende Aufklärung sind für den langfristigen Erfolg unverzichtbar. Es gibt nachvollziehbare Gründe gegen Veränderungen. Wichtig ist, sich diese anzuhören und gemeinsam an einer Lösung zu arbeiten.

5. Data Governance fehlt

Das Herstellen einer hohen Daten-Qualität ist ein dynamischer Prozess, der agil geführt werden muss. Es ist ein permanentes überwachen und anpassen der Prozesse. Wer nicht sehr früh einen Data-Governance-Plan aufstellt, muss im weiteren Projektverlauf mit erheblichen Hindernissen rechnen. In der Praxis leistet Data Governance unschätzbare Dienste, diese sind:

  • Geschäftsregeln für die Daten-Qualität festlegen
  • Prozesse optimieren
  • Stammdatenmanagement wirtschaftlich steuern

Nehmen sie als zum Ende des Projektes das Thema Data Governance auf, damit die Mühen während der Einführung nicht langfristig wieder verpuffen.

6. Erfolgskriterien fehlen

Erfolgskriterien oder KPIs helfen den Erfolg zu quantifizieren. Daher sollte vor dem Stammdatenmanagement-Projekt überlegt werden, woran die Verbesserung der Daten gemessen werden kann.

Ein Beispiel: Wenn das Projekt die Umsatzzahlen mit zuverlässigen Kunden-Daten verknüpfen soll müssen sich die KPIs auf die Verbesserung der Kundenbindung oder die erfolgreiche Realisierung von Cross-Selling-Chancen auswirken.

Exkurs: Stammdatenmanagement (englisch: Master Data Management, abgekürzt: MDM)

Stammdatenmanagement wird auch im englischen mit Master Data Management oder kurz: MDM abgekürzt. Master Data Management umfasst in Bezug auf die Stammdaten alle

  • strategischen,
  • organisatorischen,
  • methodischen und
  • technologischen Aktivitäten.

Master Data (zu Deutsch: Stammdaten) sind im ERP wichtige Grundlagen für die Geschäftsprozesse.

Das Ziel von Master Data Management ist die Optimierung, Verbesserung und langfristige Sicherung der Datenqualität und Datenkonsistenz. Problematisch ist vor allem wenn die Stammdaten in unterschiedlichen Datenbanken redundant gehalten werden. Dies führt zu zeit- und kostenaufwändigen Datenabgleichen oder zur Einführung eines zentralen MDM-Systems, dass als zentraler Datenhub die Daten für alle anderen Systeme bereitstelle.

weitere Beiträge zum Thema:

 

Der EAS-Insider – Ihr Navigator zu einem erfolgreichem Business!

So kann Sie Business Intelligence erfolgreicher machen:

Was ist Business Intelligence?

Business Intelligence (BI) bezieht sich auf Technologien, Prozesse und Methoden, die Unternehmen nutzen, um aus Rohdaten verwertbare Informationen zu gewinnen. Diese Informationen helfen, fundierte Geschäftsentscheidungen zu treffen. BI umfasst die Erfassung, Analyse und Darstellung von Daten durch Tools und Software, die komplexe Daten in verständliche Berichte, Dashboards und Visualisierungen umwandeln.

Zu den Hauptkomponenten von BI gehören Datenanalyse, Datenmining, Berichterstellung und Performance-Management. BI-Tools ermöglichen es Unternehmen, Trends zu erkennen, operative Effizienz zu verbessern, Kundenverhalten zu verstehen und die Unternehmensstrategie zu optimieren. Durch den Einsatz von BI können Unternehmen ihre Wettbewerbsfähigkeit steigern, indem sie datengetriebene Entscheidungen schneller und präziser treffen.

Wie kann Business Intelligence ein Unternehmen digital erfolgreicher machen?

Business Intelligence (BI) macht ein Unternehmen digital erfolgreicher, indem es datenbasierte Entscheidungen erleichtert und die Effizienz steigert. BI-Tools ermöglichen die Analyse großer Datenmengen, um wertvolle Einblicke zu gewinnen und fundierte Entscheidungen zu treffen. Unternehmen können Trends erkennen, Kundenverhalten analysieren und ihre Geschäftsstrategien entsprechend anpassen. BI verbessert die operative Effizienz, indem es Engpässe identifiziert und Prozesse optimiert. Echtzeit-Dashboards bieten Transparenz und erleichtern die Überwachung der Unternehmensleistung. Dadurch können Unternehmen schneller auf Marktveränderungen reagieren und Wettbewerbsvorteile nutzen. Insgesamt stärkt BI die digitale Transformation, indem es Unternehmen hilft, agiler und zukunftsorientierter zu agieren.

Wichtige Schlagworte im Kontext von Business Intelligence:

Datenanalyse

Der Prozess der Untersuchung von Datensätzen, um Muster, Zusammenhänge und Erkenntnisse zu gewinnen, die zur Verbesserung von Geschäftsentscheidungen beitragen.

Dashboards

Visuelle Darstellungen von Daten, die Echtzeitinformationen und Metriken auf einen Blick bieten, um Entscheidungsprozesse zu unterstützen und die Leistung zu überwachen.

Datenvisualisierung

Die grafische Darstellung von Daten, die es erleichtert, komplexe Informationen verständlich zu machen und Einblicke schnell zu vermitteln.

Aktuelle Beiträge zum Thema Business Intelligence:

Unsere aktuellen Blog-Beiträge!

Das sind die aktuellen Beiträge zum Thema:

Aktuelle Beiträge zum Thema:
 

DAS EAS-MAG-Glossar für den Beitrag:

6 Fehler beim Stammdatenmanagement

EAS-MAG-Glossar:

ERP-System

Ein ERP-System (Enterprise Resource Planning) ist eine integrierte Softwarelösung, die zentrale Geschäftsprozesse eines Unternehmens abdeckt, wie Finanzen, Produktion, Vertrieb, Lagerhaltung und Personalmanagement. Es ermöglicht eine nahtlose Datenverarbeitung und -vernetzung über verschiedene Abteilungen hinweg, wodurch betriebliche Effizienz und Transparenz gesteigert werden. Durch die zentrale Datenbank in einem ERP-System werden Silos vermieden, und Unternehmen können auf konsistente, aktuelle Informationen zugreifen. Dies erleichtert Entscheidungsprozesse, optimiert Ressourcen und fördert die Zusammenarbeit. Moderne ERP-Systeme sind oft modular aufgebaut und können individuell an die Bedürfnisse eines Unternehmens angepasst werden.

 
Transparenzhinweis für Advertorial
6 Fehler beim Stammdatenmanagement

Unternehmen

DIE DIGITAL-WEBER

Die DIGITAL-WEBER sind entstanden aus dem Quality-IT-Team (QITT). Unsere Experten des QITT arbeiten nun als DIGITAL-WEBER gemeinsam mit dem Kunden am Erfolg. Mit unseren Experten aus den Bereichen Web-Entwicklung, Marketing & PR und Business Consulting helfen wir unseren Kunden beim digitalen Unternehmenswachstum.

Autor