Lesen sie hier den Beitrag:

Managed AI Services: Damit KI-Services zuverlässig funktionieren

KI-basierte Applikationen bieten viele Vorteile. Sie entlasten von repetitiven Aufgaben, beschleunigen Prozesse und erhöhen deren Effizienz. Was dabei viele vergessen: KI-Projekte verlaufen phasenweise. Zunächst ist zu analysieren, ob sich vorhandene Daten, Systeme und Prozesse für die Umsetzung des favorisierten Use Case eignen. Dann gilt es, die Anforderungen an den Prototyp zu definieren, ein Konzept zu erstellen, den besten Lösungsansatz zu entwickeln und den Prototyp in ein Minimum Viable Product (MVP) zu überführen. Dank kontinuierlicher Funktions-, Last- und Integrationstests sind KI-Services in die Betriebsumgebung stabil integrierbar, und der beliebig skalierbare KI-Service lässt sich in Applikationen, Prozesse und Systeme einbinden. In der letzten Phase, dem Produktivbetrieb, scheitern viele KI-Projekte. Darum sind KI-Lösungen über ihren kompletten Lebenszyklus hinweg zu überwachen und bedarfsgerecht anzupassen. Wie das mithilfe von Managed AI Services gelingt, erläutern Niels Pothmann und Andree Kupka von Arvato Systems anhand der folgenden fünf Tipps.

Managed AI Services: Damit KI-Services zuverlässig funktionieren

1. Tipp: Stellen Sie eine professionelle Betreuung des KI-Services sicher.

Beantworten Sie zunächst eine grundlegende Frage: Wo wollen Sie den KI-Service betreiben? Im eigenen Rechenzentrum, On-Premises bei einem Dienstleister oder in der Cloud? Entscheidend ist, den KI-Service dabei kontinuierlich zu überwachen und das Modell im Live-Betrieb immer wieder anzupassen. Ein Beispiel: Ein Anlagenbauer nutzt eine KI-Applikation, die verschlissene Bauteile erkennt. Für einen funktionierenden KI-Service sind das Videomaterial der Anlagenüberwachung zu sichten, ein Modell zu erstellen und die KI mit realen Daten so zu trainieren, dass sie Verschleißerscheinungen und Leckagen identifiziert. Kommt eine neue Anlage hinzu, sind das Modell anzupassen und die KI von Neuem zu trainieren. Hierzu braucht es großes Know-how und viele Ressourcen. Sofern das Unternehmen die Managed AI Services eines spezialisierten Dienstleisters in Anspruch nimmt, kann es sich auf sein Tagesgeschäft konzentrieren. Um Re-Training und Produktivstellung kümmern sich die externen Data- und KI-Experten.

2. Tipp: Setzen Sie auf ein interdisziplinäres Team.

Achten Sie darauf, dass der Dienstleister ein interdisziplinäres Team für Sie zusammenstellt, bestehend aus einem Data Scientist oder Machine Learning Engineer, Data Engineer oder Data Architect, Cloud Architect und DevOps Engineer. Der Data Scientist überführt die Aufgabenstellung in automatisierte Verfahren, der Data Engineer erfasst und konsolidiert die benötigten Daten, der Cloud Architect richtet eine sichere, hochverfügbare IT-Infrastruktur ein, und der DevOps Engineer vermittelt zwischen Entwicklung und Betrieb.

3. Tipp: Lassen Sie den KI-Service bedarfsgerecht anpassen.

Um einen KI-Service in den Produktivbetrieb zu überführen, muss das Team reibungslos zusammenarbeiten. Der Data Scientist experimentiert mit Testdaten und entwickelt ein KI-Modell. Der Data Engineer verbindet das trainierte KI-Modell mit realen Betriebsdaten, und der DevOps Engineer begleitet die Produktivstellung. Damit der KI-Service in Echtzeit zuverlässig funktioniert, ist er fortlaufend zu betreuen und zu verbessern.

Im Produktivbetrieb erzeugt ein KI-Service eine Vielzahl an Daten. Darum ist zu prüfen, ob das Modell mit den generierten Daten weiterhin plausibel ist. Andernfalls ist es samt seiner Prozesse anzupassen. Hierfür muss der Data Scientist auf vorhandene Betriebsmodelle und -daten zugreifen. Um das angepasste Modell unter der Aufsicht des DevOps Engineers erneut in die Produktivumgebung einzubinden, ist die KI abermals zu trainieren und zu testen. Weil sich äußere Umstände und Anforderungen schlagartig ändern können, müssen Sie in der Lage sein, flexibel zu reagieren. Doch weil im Live-Betrieb Anpassungen im Trial-and-Error-Verfahren tabu sind, eignen sich dafür agile Methoden wie Continuous Integration, Continuous Delivery und Continuous Deployment.

Managed AI Services: Damit KI-Services zuverlässig funktionieren

4. Tipp: Vergessen Sie das Monitoring nicht.

Um Anpassungsbedarf zu erkennen, ist der KI-Service End-to-End zu monitoren – bis hin zum 24/7-Monitoring. Wichtig ist, dass der Dienstleister individuelle Kennzahlen, Mess- und Schwellenwerte definiert und diese im Rahmen des IT-Servicemanagements in Standardprozesse gemäß ITIL einbindet. Dabei stellt das Monitoring der Infrastruktur eine optimale Verfügbarkeit, Erreichbarkeit, Performance und Auslastung durch Event- und Incident-Management-Prozesse sicher. Das Monitoring der Applikationen erfolgt mittels Überwachung der Schnittstellen und regelmäßiger Abfragen. Monitoring ist sehr wichtig, um Anpassungen im Zweifel wieder zurücksetzen zu können. Trotz Voranalysen kann es passieren, dass sich ein KI-Service in Ihrer realen Betriebsumgebung anders verhält als angenommen. Dann ist es entscheidend, schnell wieder auf die Vorgänger-Version umzustellen.

5. Tipp: Stellen Sie ein Maximum an Flexibilität sicher.

Zudem ist es wichtig, einen Vendor Lock zu vermeiden. Darum sollte der Dienstleister das Modell so anlegen, dass sich ein KI-Service auf eine andere Infrastruktur übertragen lässt: eine andere Cloud, eine On-Premises-Lösung in einem Rechenzentrum oder den Betrieb auf eigenen Servern. Idealerweise stellt der Dienstleister das fertige Modell über eine API bereit, betreibt und überwacht den KI-Service und bietet begleitenden Support.

Fazit: Nicht ohne den passenden Partner

Die Herausforderung, KI-Services zu entwickeln, zu betreiben und zu aktualisieren, können viele Unternehmen nicht allein bewältigen. Wer mit einem professionellen Dienstleister zusammenarbeitet, sollte darauf achten, dass er Managed AI Services aus einer Hand bietet, großes Fachwissen hat und den Übergang von der Entwicklung in den Betrieb nahtlos gestaltet. So können Sie sich auf den jeweiligen Use Case konzentrieren, relevante Prozesse spürbar beschleunigen und Ihr Business wirkungsvoll vorantreiben.

Autor: Niels Pothmann ist Head of AI & Andree Kupka ist Machine Learning Engineer

weitere Beiträge zum Thema:

 

Der EAS-Insider – Ihr Navigator zu einem erfolgreichem Business!

So kann Sie künstliche Intelligenz erfolgreicher machen:

Was ist künstliche Intelligenz?

Im Kontext von Unternehmenssoftware bezieht sich künstliche Intelligenz (KI) auf Technologien, die Geschäftsprozesse automatisieren und optimieren, indem sie menschenähnliche Intelligenz auf spezifische Aufgaben anwenden. KI-gestützte Software kann große Datenmengen analysieren, Muster erkennen und Vorhersagen treffen, um fundierte Entscheidungen zu ermöglichen. Anwendungen umfassen Chatbots für den Kundenservice, die Automatisierung von Routineaufgaben, personalisierte Marketingstrategien und vorausschauende Wartung. KI verbessert die Effizienz und Genauigkeit, reduziert Kosten und steigert die Produktivität. Durch die Integration von KI in Unternehmenssoftware können Unternehmen Wettbewerbsvorteile erlangen, da sie schneller und agiler auf Marktveränderungen reagieren können, während sie gleichzeitig die Kundenerfahrung verbessern.

Wie kann künstliche Intelligenz ein Unternehmen digital erfolgreicher machen?

Künstliche Intelligenz (KI) kann ein Unternehmen digital erfolgreicher machen, indem sie Prozesse automatisiert, Entscheidungsfindung verbessert und Effizienz steigert. KI-gestützte Analysen bieten tiefe Einblicke in Daten, ermöglichen präzisere Vorhersagen und helfen, Geschäftsstrategien zu optimieren. Durch Automatisierung können Routineaufgaben effizienter erledigt werden, was Kosten senkt und menschliche Ressourcen für strategische Aufgaben freisetzt. KI verbessert auch die Kundenerfahrung durch personalisierte Empfehlungen und schnelle Reaktionen auf Anfragen. In der Produktion optimiert KI die Lieferkette und verringert Ausfallzeiten durch vorausschauende Wartung. Insgesamt fördert KI Innovation, Agilität und Wettbewerbsfähigkeit, indem sie Unternehmen befähigt, schneller und intelligenter auf Marktveränderungen zu reagieren.

Wichtige Schlagworte im Kontext von künstliche Intelligenz:

Automatisierung

Der Einsatz von KI, um wiederkehrende Aufgaben in Unternehmensprozessen zu automatisieren, wodurch Effizienz gesteigert und menschliche Ressourcen für strategische Aufgaben freigesetzt werden.

Predictive Analytics

Die Verwendung von KI-Techniken, um aus Daten Vorhersagen über zukünftige Ereignisse oder Trends zu treffen, die Unternehmen helfen, bessere Geschäftsentscheidungen zu treffen.

Chatbots

KI-gesteuerte Programme, die in Unternehmenssoftware integriert sind, um Kundenanfragen automatisiert zu beantworten, den Kundenservice zu verbessern und die Benutzererfahrung zu optimieren.

Aktuelle Beiträge zum Thema künstliche Intelligenz:

Unsere aktuellen Blog-Beiträge!

Das sind die aktuellen Beiträge zum Thema:

Aktuelle Beiträge zum Thema:
 

DAS EAS-MAG-Glossar für den Beitrag:

Managed AI Services: Damit KI-Services zuverlässig funktionieren

EAS-MAG-Glossar:

Cloud

Cloud bezeichnet die Bereitstellung von Software, Diensten und Daten über das Internet statt lokal auf firmeneigenen Servern. Unternehmen nutzen Cloud-basierte Lösungen, um Flexibilität, Skalierbarkeit und Kosteneffizienz zu erhöhen. Anwendungen, wie CRM, ERP oder Buchhaltung, werden über die Cloud gehostet und ermöglichen Mitarbeitern den Zugriff von überall. Die Cloud reduziert die Notwendigkeit für teure IT-Infrastruktur und Wartung, da Anbieter für Sicherheit, Updates und Verfügbarkeit sorgen. Typische Cloud-Modelle umfassen SaaS (Software as a Service), PaaS (Platform as a Service) und IaaS (Infrastructure as a Service).

Digitalisierung

Digitalisierung bezieht sich auf die Umwandlung traditioneller Geschäftsprozesse und -modelle durch den Einsatz digitaler Technologien. Dies umfasst die Integration von Softwarelösungen zur Automatisierung von Arbeitsabläufen, Verbesserung der Datenverarbeitung und Optimierung der Kommunikation. Durch Digitalisierung können Unternehmen Effizienz steigern, Kosten senken und die Qualität von Produkten und Dienstleistungen verbessern. Sie ermöglicht eine datengesteuerte Entscheidungsfindung und bietet Zugang zu Echtzeitinformationen. Unternehmenssoftware wie ERP-, CRM- und SCM-Systeme spielt eine zentrale Rolle bei der Digitalisierung, indem sie Prozesse integrieren und Transparenz schaffen. Digitalisierung fördert Innovation, steigert die Wettbewerbsfähigkeit und unterstützt Unternehmen bei der Anpassung an sich wandelnde Marktanforderungen.

KI - Künstliche Intelligenz

Künstliche Intelligenz (KI) bezeichnet die Fähigkeit von Computern und Maschinen, Aufgaben zu übernehmen, die normalerweise menschliche Intelligenz erfordern. Dazu gehören Lernen, Problemlösung, Mustererkennung und Entscheidungsfindung. KI-Systeme nutzen Algorithmen und Daten, um eigenständig zu lernen und sich zu verbessern. Beispiele sind maschinelles Lernen, neuronale Netze und natürliche Sprachverarbeitung. KI findet Anwendung in vielen Bereichen, darunter autonome Fahrzeuge, Spracherkennung, personalisierte Empfehlungen und medizinische Diagnosen. Sie bietet das Potenzial, Effizienz und Innovation zu steigern, bringt jedoch auch ethische Herausforderungen und Diskussionen über Datenschutz und Arbeitsplatzveränderungen mit sich. KI verändert die Art und Weise, wie wir leben und arbeiten.

Unternehmenssoftware

Unternehmenssoftware ist eine spezialisierte Software, die Unternehmen bei der Optimierung und Automatisierung ihrer Geschäftsprozesse unterstützt. Zu den gängigen Anwendungen gehören Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), und Human Resource Management Systems (HRMS). Diese Softwarelösungen integrieren verschiedene Geschäftsbereiche wie Buchhaltung, Vertrieb und Personalwesen, um Effizienz und Produktivität zu steigern. Unternehmenssoftware ermöglicht die zentrale Verwaltung von Daten, fördert die Zusammenarbeit zwischen Abteilungen und bietet Echtzeitdaten für fundierte Entscheidungsfindungen. Sie reduziert manuelle Arbeitsaufwände, minimiert Fehler und spielt eine zentrale Rolle in der digitalen Transformation von Unternehmen, erfordert jedoch eine sorgfältige Implementierung und Schulung.

 
Transparenzhinweis für Pressemitteilung
Managed AI Services: Damit KI-Services zuverlässig funktionieren

Unternehmen

Arvato Systems

Autor

Niels Pothmann ist Head of AI & Andree Kupka ist Machine Learning Engineer