Gastbeitrag

Die Kombination von KI und physikalischen Modellen eröffnet neue Optimierungspotenziale

Um was geht es in diesem Beitrag:

Lesen sie hier den Beitrag:

Die Kombination von KI und physikalischen Modellen eröffnet neue Optimierungspotenziale

Die Kombination von physikalischen Modellen und Künstlicher Intelligenz vereinfacht und beschleunigt die Entwicklung komplexer Produkte und Prozesse. Die Kombination von KI und physikalischen Modellen eröffnet damit neue Optimierungspotenziale. LeanBI, Spezialist für Data-Science-Anwendungen zeigt fünf typische Anwendungsszenarien auf.

Die Kombination von KI und physikalischen Modellen eröffnet neue Optimierungspotenziale

Flugzeugflügel sind ein aerodynamisches Wunderwerk. Sie sollen den notwendigen Auftrieb liefern und für Stabilität und Manövrierfähigkeit sorgen. Gleichzeitig sollen sie so geformt sein, dass sie der Luft möglichst wenig Widerstand bieten, um den Kerosin-Verbrauch zu senken. Für die Berechnung der optimalen Strömungseigenschaften mit physikalischen Simulationen sind Unmengen an Daten notwendig. Mit Hilfe von Künstlicher Intelligenz und Machine Learning ist es möglich, Simulationen zu prognostizieren und damit schneller und effizienter optimale Strömungsformen zu finden. Gleichzeitig vereinfacht umgekehrt die Anwendung physikalischer Modelle die Entwicklung von KI-Algorithmen. Generell sind drei Kombinationen möglich. Die physikalischen Modelle speisen die KI, die KI speist die physikalischen Modelle oder beide laufen sich ergänzend parallel (hybride Modelle). LeanBI skizziert mögliche Einsatzszenarien.

Die möglichen Szenarien zur Kombination von KI und physikalischen Modellen

Produktionsplanung

Die optimale Auslastung einer Produktionsstraße und deren Teilstrecken, etwa einer Lackieranlage in der Automobilproduktion, ist angesichts der Variantenvielfalt ein komplexer Prozess. Bei der Durchlaufoptimierung erfolgt vorab eine Simulation verschiedener Situationen. Darauf ist die Produktionsplanung, auch mit Hilfe von Künstlicher Intelligenz, tagesweise aufzusetzen.

Predictive Maintenance von Bauteilen

Kritische Bauteile, wie etwa ein Wälzlager, werden mit Hilfe von Sensoren überwacht. Dabei ist es wichtig, bei der Detektion verschiedener Schadenstypen verfälschende Umwelteinflüsse auszuschließen. Für entsprechende Lösungen werden deswegen KI/ML-Modelle eingesetzt, die wiederum mit physikalischen Algorithmen gefüttert wurden.

Die Kombination von KI und physikalischen Modellen eröffnet neue Optimierungspotenziale

Schadenserkennung an Bauwerken

Die Strukturanalyse, also etwa die Identifizierung der Spannungsverteilungen innerhalb von Turm- oder Brückenkonstruktionen, erfolgt nach der Finite-Elemente-Methode (FEM). Bei einer laufenden Überwachung direkt an der Konstruktion oder mit optischen Verfahren wie Drohnenkameras werden KI-Modelle eingesetzt. Die Kombination von Strukturanalyse und KI hilft, den Risikograd von Schäden zu erkennen und falls notwendig vorsorgliche Reparatur- oder Renovierungsmaßnahmen daraus abzuleiten.

Präsenzkontrolle in Innenräumen

Durch den Einsatz kostengünstiger Sensoren können die CO2-Profile in Innenräumen aufgenommen werden. Das macht die Erfassung der Präsenz von Personen unter Beibehaltung des Datenschutzes möglich. Die Innenräume weisen jedoch unterschiedlichste Durchlüftungscharakteristiken auf. Um trotzdem aussagekräftige Ergebnisse zu erzielen, wird die KI-Analytik einmalig automatisiert mit physikalischen Modellen auf die Spezifika des jeweiligen Innenraums kalibriert.

Training von Roboterarmen

Mit Hilfe von Reinforcement Learning werden nach dem Prinzip von Belohnung und Bestrafung Strategien des Greifens erlernt. So können Roboterarme lernen, Objekte unterschiedlichster Formen in undefinierter Lage zu greifen. Für das Training dieser KI-Modelle sind die Daten sehr viel einfacher durch Simulation der Roboterbewegungen zu erstellen, als durch kostspielige echte Testläufe.
„Die Kombination von physischen Modellen und Künstlicher Intelligenz ist auf eine Vielzahl ganz unterschiedlicher Prozesse anwendbar“, erklärt Marc Tesch, Inhaber und CEO des Schweizer Data-Science-Spezialisten LeanBI. „Sie ist breit nutzbar und eröffnet damit ganz neue praktische Optionen zur Anwendung von KI und ML.“

Autor: Marc Tesch, Inhaber und CEO von LeanBI

weitere Beiträge zum Thema:

KI - Künstliche Intelligenz

Die Zukunft der KI ist offen

Open Source basiert auf Zusammenarbeit und Transparenz. Dank dieser beiden unbestreitbaren Vorteile haben Open-Source-Lösungen das Potenzial, die Art und Weise zu revolutionieren, wie KI-Systeme entwickelt

Weiterlesen »
 

Der EAS-Insider – Ihr Navigator zu einem erfolgreichem Business!

So kann Sie künstliche Intelligenz erfolgreicher machen:

Was ist künstliche Intelligenz?

Im Kontext von Unternehmenssoftware bezieht sich künstliche Intelligenz (KI) auf Technologien, die Geschäftsprozesse automatisieren und optimieren, indem sie menschenähnliche Intelligenz auf spezifische Aufgaben anwenden. KI-gestützte Software kann große Datenmengen analysieren, Muster erkennen und Vorhersagen treffen, um fundierte Entscheidungen zu ermöglichen. Anwendungen umfassen Chatbots für den Kundenservice, die Automatisierung von Routineaufgaben, personalisierte Marketingstrategien und vorausschauende Wartung. KI verbessert die Effizienz und Genauigkeit, reduziert Kosten und steigert die Produktivität. Durch die Integration von KI in Unternehmenssoftware können Unternehmen Wettbewerbsvorteile erlangen, da sie schneller und agiler auf Marktveränderungen reagieren können, während sie gleichzeitig die Kundenerfahrung verbessern.

Wie kann künstliche Intelligenz ein Unternehmen digital erfolgreicher machen?

Künstliche Intelligenz (KI) kann ein Unternehmen digital erfolgreicher machen, indem sie Prozesse automatisiert, Entscheidungsfindung verbessert und Effizienz steigert. KI-gestützte Analysen bieten tiefe Einblicke in Daten, ermöglichen präzisere Vorhersagen und helfen, Geschäftsstrategien zu optimieren. Durch Automatisierung können Routineaufgaben effizienter erledigt werden, was Kosten senkt und menschliche Ressourcen für strategische Aufgaben freisetzt. KI verbessert auch die Kundenerfahrung durch personalisierte Empfehlungen und schnelle Reaktionen auf Anfragen. In der Produktion optimiert KI die Lieferkette und verringert Ausfallzeiten durch vorausschauende Wartung. Insgesamt fördert KI Innovation, Agilität und Wettbewerbsfähigkeit, indem sie Unternehmen befähigt, schneller und intelligenter auf Marktveränderungen zu reagieren.

Wichtige Schlagworte im Kontext von künstliche Intelligenz:

Automatisierung

Der Einsatz von KI, um wiederkehrende Aufgaben in Unternehmensprozessen zu automatisieren, wodurch Effizienz gesteigert und menschliche Ressourcen für strategische Aufgaben freigesetzt werden.

Predictive Analytics

Die Verwendung von KI-Techniken, um aus Daten Vorhersagen über zukünftige Ereignisse oder Trends zu treffen, die Unternehmen helfen, bessere Geschäftsentscheidungen zu treffen.

Chatbots

KI-gesteuerte Programme, die in Unternehmenssoftware integriert sind, um Kundenanfragen automatisiert zu beantworten, den Kundenservice zu verbessern und die Benutzererfahrung zu optimieren.

Aktuelle Beiträge zum Thema künstliche Intelligenz:

So kann Sie Business Intelligence erfolgreicher machen:

Was ist Business Intelligence?

Business Intelligence (BI) bezieht sich auf Technologien, Prozesse und Methoden, die Unternehmen nutzen, um aus Rohdaten verwertbare Informationen zu gewinnen. Diese Informationen helfen, fundierte Geschäftsentscheidungen zu treffen. BI umfasst die Erfassung, Analyse und Darstellung von Daten durch Tools und Software, die komplexe Daten in verständliche Berichte, Dashboards und Visualisierungen umwandeln.

Zu den Hauptkomponenten von BI gehören Datenanalyse, Datenmining, Berichterstellung und Performance-Management. BI-Tools ermöglichen es Unternehmen, Trends zu erkennen, operative Effizienz zu verbessern, Kundenverhalten zu verstehen und die Unternehmensstrategie zu optimieren. Durch den Einsatz von BI können Unternehmen ihre Wettbewerbsfähigkeit steigern, indem sie datengetriebene Entscheidungen schneller und präziser treffen.

Wie kann Business Intelligence ein Unternehmen digital erfolgreicher machen?

Business Intelligence (BI) macht ein Unternehmen digital erfolgreicher, indem es datenbasierte Entscheidungen erleichtert und die Effizienz steigert. BI-Tools ermöglichen die Analyse großer Datenmengen, um wertvolle Einblicke zu gewinnen und fundierte Entscheidungen zu treffen. Unternehmen können Trends erkennen, Kundenverhalten analysieren und ihre Geschäftsstrategien entsprechend anpassen. BI verbessert die operative Effizienz, indem es Engpässe identifiziert und Prozesse optimiert. Echtzeit-Dashboards bieten Transparenz und erleichtern die Überwachung der Unternehmensleistung. Dadurch können Unternehmen schneller auf Marktveränderungen reagieren und Wettbewerbsvorteile nutzen. Insgesamt stärkt BI die digitale Transformation, indem es Unternehmen hilft, agiler und zukunftsorientierter zu agieren.

Wichtige Schlagworte im Kontext von Business Intelligence:

Datenanalyse

Der Prozess der Untersuchung von Datensätzen, um Muster, Zusammenhänge und Erkenntnisse zu gewinnen, die zur Verbesserung von Geschäftsentscheidungen beitragen.

Dashboards

Visuelle Darstellungen von Daten, die Echtzeitinformationen und Metriken auf einen Blick bieten, um Entscheidungsprozesse zu unterstützen und die Leistung zu überwachen.

Datenvisualisierung

Die grafische Darstellung von Daten, die es erleichtert, komplexe Informationen verständlich zu machen und Einblicke schnell zu vermitteln.

Aktuelle Beiträge zum Thema Business Intelligence:

Unsere aktuellen Blog-Beiträge!

Das sind die aktuellen Beiträge zum Thema:

Aktuelle Beiträge zum Thema:
 

DAS EAS-MAG-Glossar für den Beitrag:

Die Kombination von KI und physikalischen Modellen eröffnet neue Optimierungspotenziale

EAS-MAG-Glossar:

Digitalisierung

Digitalisierung bezieht sich auf die Umwandlung traditioneller Geschäftsprozesse und -modelle durch den Einsatz digitaler Technologien. Dies umfasst die Integration von Softwarelösungen zur Automatisierung von Arbeitsabläufen, Verbesserung der Datenverarbeitung und Optimierung der Kommunikation. Durch Digitalisierung können Unternehmen Effizienz steigern, Kosten senken und die Qualität von Produkten und Dienstleistungen verbessern. Sie ermöglicht eine datengesteuerte Entscheidungsfindung und bietet Zugang zu Echtzeitinformationen. Unternehmenssoftware wie ERP-, CRM- und SCM-Systeme spielt eine zentrale Rolle bei der Digitalisierung, indem sie Prozesse integrieren und Transparenz schaffen. Digitalisierung fördert Innovation, steigert die Wettbewerbsfähigkeit und unterstützt Unternehmen bei der Anpassung an sich wandelnde Marktanforderungen.

KI - Künstliche Intelligenz

Künstliche Intelligenz (KI) bezeichnet die Fähigkeit von Computern und Maschinen, Aufgaben zu übernehmen, die normalerweise menschliche Intelligenz erfordern. Dazu gehören Lernen, Problemlösung, Mustererkennung und Entscheidungsfindung. KI-Systeme nutzen Algorithmen und Daten, um eigenständig zu lernen und sich zu verbessern. Beispiele sind maschinelles Lernen, neuronale Netze und natürliche Sprachverarbeitung. KI findet Anwendung in vielen Bereichen, darunter autonome Fahrzeuge, Spracherkennung, personalisierte Empfehlungen und medizinische Diagnosen. Sie bietet das Potenzial, Effizienz und Innovation zu steigern, bringt jedoch auch ethische Herausforderungen und Diskussionen über Datenschutz und Arbeitsplatzveränderungen mit sich. KI verändert die Art und Weise, wie wir leben und arbeiten.

 
Transparenzhinweis für Gastbeitrag
Die Kombination von KI und physikalischen Modellen eröffnet neue Optimierungspotenziale

Unternehmen

LeanBI

LeanBI mit Hauptsitz in Bern ist ein Schweizer Spezialist für Data-Science-Anwendungen, der auf Basis von Künstlicher Intelligenz maßgeschneiderte Datenanalyse-Lösungen entwickelt. Die Anwendungen umfassen Bereiche wie Qualitäts- und Prozessoptimierung über die automatisierte Schadenserkennung an Infrastrukturen bis hin zur Analyse von Luftqualität und Nutzerverhalten in Räumen. Die Lösungen von LeanBI für die Fertigungsindustrie nutzen Digitale Zwillinge von Maschinen und Produktionsanlagen, die das Unternehmen mithilfe geeigneter Sensortechnik realisiert. Zu den Kunden von LeanBI zählen ABB, Amberg Group, Stöcklin, Trumpf, Geberit oder die Schweizerische Post.

Autor

Marc Tesch, Inhaber und CEO von LeanBI

07